Instructions: Maximum time is 3 hours. Maximum Score is 100. If you are using a result shown in class then please state it precisely.

1. (Nash Inequality)

- (a) (3 points) Define what is meant to say "A weighted graph (Γ, μ) satisfies (N_{α}) .
- (b) (10 points) Let Γ_i for i = 1, 2 be graphs, with natural weights, which satisfy (N_{α_i}) respectively. Show that the join of Γ_1 and Γ_2 satisfies $(N_{\alpha_1 \wedge \alpha_2})$
- (c) (12 points) Let Γ be two copies of \mathbb{Z}^d joined at the origin. Let the transition kernel of the random walk on Γ be denoted by $p_n(x, y)$. Then show that

$$p_n(x,y) \le \frac{c_2}{n^{\frac{d}{2}}},$$

for some $c_2 > 0$.

2. (Isoperimetric Inequality)

- (a) (3 points) Define what is meant to say "A weighted graph (Γ, μ) satisfies (I_{α}) .
- (b) (10 points) Show that I_{α} is stable under rough isometry.
- (c) (12 points) Show that the Binary tree \mathbb{T}^2 satisfies (I_{∞}) with $C_0 = 3$.
- 3. (Effective Resistance) Let $(\Gamma = (V, E), \mu)$ be a locally finite, connected, infinite vertex, weighted graph. Let $B_0, B_1 \subset V$.
 - (a) (3 points) Define the effective conductance between B_0 and B_1 .
 - (b) (10 points) Let $B_0 = \{x\}$ and $B_1 = \{y\}$ where $x \sim y$ in V. Assume that the graph will be disconnected if we remove the edge $\{x, y\}$. Find $C_{\text{eff}}(B_0, B_1)$.
 - (c) (12 points) Consider the graph \mathbb{Z} with natural weights. Calculate $R_{eff}(\{0\}, [-n, n]^c)$. Use this to conclude that \mathbb{Z} is recurrent.
- 4. (Harmonic Functions) Let $V = \mathbb{Z}^3$ be equipped with the canonical edges and natural weights. Let X_n be the random walk on it. Let $n \ge 1$, $A = \mathbb{Z}^3 \setminus \{0\}$. Let $h_n, h : V \to [0, 1]$ be given by

$$h_n(x) = \mathbb{P}^x(T_0 \ge n) = \mathbb{P}^x(X_k \in A, 1 \le k \le n)$$

and

$$h(x) = \mathbb{P}^x(T_0 = \infty) = \mathbb{P}^x(X_n \in A, \text{ for all } n > 0).$$

- (a) (5 points) State the maximum principle for Harmonic functions.
- (b) (5 points) Show that $h_n = Q^n 1_A$ and h = Qh, where Q is the restriction of P onto A.
- (c) (5 points) Suppose $\alpha = \sup_{x \in A} h(x)$, show that $0 < \alpha \leq 1$ and $h \leq \alpha 1_A$
- (d) (5 points) Using (a) and (b), conclude that $h \leq \alpha h_n$
- (e) (5 points) Conclude that $\max_{x \in \partial A} h(x) \neq \sup_{x \in \overline{A}} h(x)$.
 - 1